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• The incumbent firm is already in business.

• There are two steps in this game:

1 challenger decides whether to enter;

2 incumbent decides whether to fight.

• We model this as a simultaneous game.
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challenger.

• Terminal Histories:

• These are (Not),
(Enter,Not), and
(Enter,Fight).

• Other histories are ∅ and
(Enter).

• Player function:

• It is P (∅) = Challenger,
and
P (Enter) = Incumbent.

• Preferences:

• On the tree.
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Extensive Game with Perfect

Information

Definition
An extensive game with perfect information consists of:

• a set of players,

• a set of sequences (terminal histories) with the property that no
sequence is a proper subhistory of any other sequence,

• a function (the player function) that assigns a player to every
sequence that is a proper subhistory of some terminal history, and

• preferences over the set of terminal histories for each player.

• Actions are not specified but can be inferred from terminal
histories; that is, A(h) = {a| (h, a) is a history} .
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Strategies
• A strategy is a

complete contingency plan.

Definition
A strategy of player i in an extensive form game with perfect
information is a function that assigns to each history h, after
which it is player i’s turn to move, an action in A(h).

• Let ui (si, s−i) be player i’s payoff when she plays si and
others play s−i.

Definition
A strategy profile s∗ in an extensive form game with perfect
information is a Nash equilibrium if for all players i,

ui

(
s∗i , s

∗
−i

)
≥ ui

(
si, s

∗
−i

)
for all strategies si.
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Definition
Let Γ be an extensive game with perfect
information, with player function P . For any
nonterminal history h of Γ, the subgame Γ(h)
following the history h is the following extensive
game.

D

F

H

C

E

G

1 2 0 0

3 1

2 0

x1

x2

x3

1

2

1

F

H

E

G

1 2 0 0

3 1

x2

x3

2

1
HG

1 2 0 0

x3

1



Subgame

Christos A. Ioannou
9/15

Definition
Let Γ be an extensive game with perfect
information, with player function P . For any
nonterminal history h of Γ, the subgame Γ(h)
following the history h is the following extensive
game.

D

F

H

C

E

G

1 2 0 0

3 1

2 0

x1

x2

x3

1

2

1

F

H

E

G

1 2 0 0

3 1

x2

x3

2

1
HG

1 2 0 0

x3

1



Subgame

Christos A. Ioannou
9/15

Definition
Let Γ be an extensive game with perfect
information, with player function P . For any
nonterminal history h of Γ, the subgame Γ(h)
following the history h is the following extensive
game.

D

F

H

C

E

G

1 2 0 0

3 1

2 0

x1

x2

x3

1

2

1

F

H

E

G

1 2 0 0

3 1

x2

x3

2

1

HG

1 2 0 0

x3

1



Subgame

Christos A. Ioannou
9/15

Definition
Let Γ be an extensive game with perfect
information, with player function P . For any
nonterminal history h of Γ, the subgame Γ(h)
following the history h is the following extensive
game.

D

F

H

C

E

G

1 2 0 0

3 1

2 0

x1

x2

x3

1

2

1

F

H

E

G

1 2 0 0

3 1

x2

x3

2

1
HG

1 2 0 0

x3

1



Subgame Perfect Nash Equilibrium
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Definition
A strategy profile s∗ in an extensive form game
with perfect information is a Subgame Perfect
Nash Equilibrium (SPNE) if the strategy s∗ is a
Nash equilibrium for every subgame.
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A strategy profile s∗ in an extensive form game
with perfect information is a Subgame Perfect
Nash Equilibrium (SPNE) if the strategy s∗ is a
Nash equilibrium for every subgame.
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Subgame Perfect Nash Equilibrium

(Example)
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Backward Induction
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• Backward induction works as follows.

• One starts at the very last subgame;

• in that last subgame, one finds the
equilibrium;

• the subgame is, then, replaced with the
respective equilibrium payoffs;

• the process continues in the penultimate
subgame and so on and so forth until you
reach the very first subgame.

• A SPNE always exists.

• Backward induction always provides all SPNE.
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Backward Induction (Cont.)
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Exercise on Finding all SPNE
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• Find all SPNE (s∗1, s
∗
2).

(A, JLP ) (A,KLP ) (B,KLP )

(C,KLP ) (A, JMP ) (B,KMP )

A B C

J K L M O P

3 0 1 0 1 1 2 1 2 2 1 3

x1

x2 x3 x4
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Recall our Motivational Example
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