# EXTENSIVE GAMES WITH PERFECT INFORMATION: THEORY

• The incumbent firm is already in business.

- The incumbent firm is already in business.
- There are two steps in this game:

- The incumbent firm is already in business.
- There are two steps in this game:
  - 1 challenger decides whether to enter;

- The incumbent firm is already in business.
- There are two steps in this game:
  - 1 challenger decides whether to enter;
  - 2 incumbent decides whether to fight.

- The incumbent firm is already in business.
- There are two steps in this game:
  - 1 challenger decides whether to enter;
  - 2 incumbent decides whether to fight.
- We model this as a simultaneous game.

- The incumbent firm is already in business.
- There are two steps in this game:
  - 1 challenger decides whether to enter;
  - 2 incumbent decides whether to fight.
- We model this as a simultaneous game.

- The incumbent firm is already in business.
- There are two steps in this game:
  - 1 challenger decides whether to enter;
  - 2 incumbent decides whether to fight.
- We model this as a simultaneous game.

Challenger

#### Incumbent

|       | Fight | Not |
|-------|-------|-----|
| Enter | 0,0   | 2,1 |
| Not   | 1,2   | 1,2 |



• Players:





#### • Players:

• The incumbent and the challenger.



#### • Players:

The incumbent and the challenger.



#### • Players:

- The incumbent and the challenger.
- Terminal Histories:



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

 These are (Not), (Enter,Not), and (Enter,Fight).



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are  $\emptyset$  and (Enter).
- Player function:



#### • Players:

The incumbent and the challenger.

#### • Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).

#### Player function:

• It is  $P(\emptyset) = \text{Challenger}$ , and P(Enter) = Incumbent.



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).

#### Player function:

• It is  $P(\emptyset) = \text{Challenger}$ , and P(Enter) = Incumbent.

Christos A. Ioannou



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).

#### Player function:

- It is  $P(\emptyset) = \text{Challenger}$ , and P(Enter) = Incumbent.
- Preferences:

4/15



#### • Players:

The incumbent and the challenger.

#### Terminal Histories:

- These are (Not), (Enter,Not), and (Enter,Fight).
- Other histories are ∅ and (Enter).

#### Player function:

• It is  $P(\emptyset) = \text{Challenger}$ , and P(Enter) = Incumbent.

#### • Preferences:

• On the tree.

# EXTENSIVE GAME WITH PERFECT INFORMATION

#### **Definition**

An extensive game with perfect information consists of:

- a set of players,
- a set of sequences (**terminal histories**) with the property that no sequence is a proper subhistory of any other sequence,
- a function (the player function) that assigns a player to every sequence that is a proper subhistory of some terminal history, and
- preferences over the set of terminal histories for each player.

# EXTENSIVE GAME WITH PERFECT INFORMATION

#### **Definition**

An extensive game with perfect information consists of:

- a set of players,
- a set of sequences (**terminal histories**) with the property that no sequence is a proper subhistory of any other sequence,
- a function (the **player function**) that assigns a player to every sequence that is a proper subhistory of some terminal history, and
- preferences over the set of terminal histories for each player.
- Actions are not specified but can be inferred from terminal histories; that is,  $A(h) = \{a | (h, a) \text{ is a history}\}$ .

• A strategy is a

• A strategy is a complete contingency plan.

• A strategy is a complete contingency plan.

#### **Definition**

A **strategy** of player i in an extensive form game with perfect information is a function that assigns to each history h, after which it is player i's turn to move, an action in A(h).

• A strategy is a complete contingency plan.

#### Definition

A **strategy** of player i in an extensive form game with perfect information is a function that assigns to each history h, after which it is player i's turn to move, an action in A(h).

• Let  $u_i(s_i, s_{-i})$  be player i's payoff when she plays  $s_i$  and others play  $s_{-i}$ .

• A strategy is a complete contingency plan.

#### **Definition**

A **strategy** of player i in an extensive form game with perfect information is a function that assigns to each history h, after which it is player i's turn to move, an action in A(h).

• Let  $u_i(s_i, s_{-i})$  be player i's payoff when she plays  $s_i$  and others play  $s_{-i}$ .

#### Definition

A strategy profile  $s^*$  in an extensive form game with perfect information is a **Nash equilibrium** if for all players i,

$$u_i\left(s_i^*, s_{-i}^*\right) \ge u_i\left(s_i, s_{-i}^*\right)$$
 for all strategies  $s_i$ .





| # |  |
|---|--|
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |



| # | Choice at $x_1$ | Choice at $x_3$ |
|---|-----------------|-----------------|
| 1 |                 |                 |
| 2 |                 |                 |
| 3 |                 |                 |
| 4 |                 |                 |



| # | Choice at $x_1$ | Choice at $x_3$ |
|---|-----------------|-----------------|
| 1 | С               | G               |
| 2 |                 |                 |
| 3 |                 |                 |
| 4 |                 |                 |



|   | # | Choice at $x_1$ | Choice at $x_3$ |
|---|---|-----------------|-----------------|
| ſ | 1 | С               | G               |
| Ī | 2 | С               | Н               |
| ľ | 3 |                 |                 |
| Ī | 4 |                 |                 |



| # | Choice at $x_1$ | Choice at $x_3$ |
|---|-----------------|-----------------|
| 1 | С               | G               |
| 2 | С               | Н               |
| 3 | D               | G               |
| 4 |                 |                 |



• Player 1's strategies are:

| # | Choice at $x_1$ | Choice at $x_3$ |
|---|-----------------|-----------------|
| 1 | С               | G               |
| 2 | С               | Н               |
| 3 | D               | G               |
| 4 | D               | Н               |



• Player 1's strategies are:

| # | Choice at $x_1$ | Choice at $x_3$ |
|---|-----------------|-----------------|
| 1 | С               | G               |
| 2 | С               | Н               |
| 3 | D               | G               |
| 4 | D               | Н               |

• Player 2's strategies are:

| # |  |
|---|--|
| 1 |  |
| 2 |  |



• Player 1's strategies are:

| # | Choice at $x_1$       | Choice at $x_3$              |
|---|-----------------------|------------------------------|
| 1 | С                     | G                            |
| 2 | С                     | Н                            |
| 3 | D                     | G                            |
| 4 | D                     | Н                            |
|   | #<br>1<br>2<br>3<br>4 | # Choice at x <sub>1</sub> 1 |

• Player 2's strategies are:

| # | Choice at $x_2$ |
|---|-----------------|
| 1 |                 |
| 2 |                 |



• Player 1's strategies are:

| # | Choice at $x_1$       | Choice at $x_3$              |
|---|-----------------------|------------------------------|
| 1 | С                     | G                            |
| 2 | С                     | Н                            |
| 3 | D                     | G                            |
| 4 | D                     | Н                            |
|   | #<br>1<br>2<br>3<br>4 | # Choice at x <sub>1</sub> 1 |

• Player 2's strategies are:

| # | Choice at $x_2$ |
|---|-----------------|
| 1 | E               |
| 2 |                 |



• Player 1's strategies are:

| # | Choice at $x_1$ | Choice at $x_3$ |
|---|-----------------|-----------------|
| 1 | С               | G               |
| 2 | С               | Н               |
| 3 | D               | G               |
| 4 | D               | Н               |

• Player 2's strategies are:

| # | Choice at $x_2$ |
|---|-----------------|
| 1 | E               |
| 2 | F               |



















|    | E   | F   |
|----|-----|-----|
| CG | 1 2 | 3 1 |
| СН | 0 0 | 3 1 |
| DG |     |     |
| DH |     |     |







|    | Е   | F   |
|----|-----|-----|
| CG | 1 2 | 3 1 |
| СН | 0 0 | 3 1 |
| DG | 2 0 | 2 0 |
| DH |     |     |



|    | E   | F   |
|----|-----|-----|
| CG | 1 2 | 3 1 |
| СН | 0 0 | 3 1 |
| DG | 2 0 | 2 0 |
| DH | 2 0 |     |

8/15



|    | E   | F   |
|----|-----|-----|
| CG | 1 2 | 3 1 |
| СН | 0 0 | 3 1 |
| DG | 2 0 | 2 0 |
| DH | 2 0 | 2 0 |

#### **Definition**

Let  $\Gamma$  be an extensive game with perfect information, with player function P. For any nonterminal history h of  $\Gamma$ , the **subgame**  $\Gamma(h)$  following the history h is the following extensive game.



#### **Definition**

Let  $\Gamma$  be an extensive game with perfect information, with player function P. For any nonterminal history h of  $\Gamma$ , the **subgame**  $\Gamma(h)$  following the history h is the following extensive game.



#### **Definition**

Let  $\Gamma$  be an extensive game with perfect information, with player function P. For any nonterminal history h of  $\Gamma$ , the **subgame**  $\Gamma(h)$  following the history h is the following extensive game.





#### **Definition**

Let  $\Gamma$  be an extensive game with perfect information, with player function P. For any nonterminal history h of  $\Gamma$ , the **subgame**  $\Gamma(h)$  following the history h is the following extensive game.



## Subgame Perfect Nash Equilibrium

#### Definition

A strategy profile  $s^*$  in an extensive form game with perfect information is a **Subgame Perfect Nash Equilibrium** (SPNE) if the strategy  $s^*$  is a Nash equilibrium for every subgame.

Every Subgame Perfect Nash equilibrium is a Nash equilibrium.

## Subgame Perfect Nash Equilibrium



#### **Definition**

A strategy profile  $s^*$  in an extensive form game with perfect information is a **Subgame Perfect Nash Equilibrium** (SPNE) if the strategy  $s^*$  is a Nash equilibrium for every subgame.

Every Subgame Perfect Nash equilibrium is a Nash equilibrium.

## Subgame Perfect Nash Equilibrium



#### Definition

A strategy profile  $s^*$  in an extensive form game with perfect information is a **Subgame Perfect** Nash Equilibrium (SPNE) if the strategy  $s^*$  is a Nash equilibrium for every subgame.



Every Subgame Perfect Nash equilibrium is a Nash equilibrium.

## SUBGAME PERFECT NASH EQUILIBRIUM



#### Definition

A strategy profile  $s^*$  in an extensive form game with perfect information is a **Subgame Perfect** Nash Equilibrium (SPNE) if the strategy  $s^*$  is a Nash equilibrium for every subgame.



Every Subgame Perfect Nash equilibrium is a Nash equilibrium.







Backward induction works as follows.

One starts at the very last subgame;

in that last subgame, one finds the equilibrium;

 the subgame is, then, replaced with the respective equilibrium payoffs;

the process continues in the penultimate subgame and so on and so forth until you reach the very first subgame.



12/15

Backward induction works as follows.

One starts at the very last subgame;

in that last subgame, one finds the equilibrium;

 the subgame is, then, replaced with the respective equilibrium payoffs;

the process continues in the penultimate subgame and so on and so forth until you reach the very first subgame.

A SPNE always exists.



Backward induction works as follows.

One starts at the very last subgame;

in that last subgame, one finds the equilibrium;

 the subgame is, then, replaced with the respective equilibrium payoffs;

the process continues in the penultimate subgame and so on and so forth until you reach the very first subgame.

- A SPNE always exists.
- Backward induction always provides

Backward induction works as follows.

One starts at the very last subgame;

in that last subgame, one finds the equilibrium;

 the subgame is, then, replaced with the respective equilibrium payoffs;

- the process continues in the penultimate subgame and so on and so forth until you reach the very first subgame.
- A SPNE always exists.
- Backward induction always provides all SPNE.

# BACKWARD INDUCTION (CONT.)







(A, JLP)



$$(A, JLP)$$
  $(A, KLP)$ 



$$(A, JLP)$$
  $(A, KLP)$   $(B, KLP)$ 



$$(A, JLP)$$
  $(A, KLP)$   $(B, KLP)$   $(C, KLP)$ 



$$(A, JLP)$$
  $(A, KLP)$   $(B, KLP)$   $(C, KLP)$   $(A, JMP)$ 



$$(A, JLP)$$
  $(A, KLP)$   $(B, KLP)$   $(C, KLP)$   $(A, JMP)$   $(B, KMP)$ 

### RECALL OUR MOTIVATIONAL EXAMPLE

